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Response to Red and Blue Lights by Electrical Currents 
on the Surface of Intact Leaves 
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Exposure to red and blue lights caused an increase in electrical currents (0.14 laA cm -2 for red and 0.05 D~ cm 2 for 
blue, respectively) flowing on the lower surface of leaves from Commelina communis. However, no changes were 
measured in currents from isolated epidermal cells. To determine the influence of the mesophyll on such electrical 
changes, those cells were infiltrated with photosynthesis inhibitors. Both DCCD treated and control leaf discs showed 
the same level of response to red light. Epidermal strips were also removed to measure the currents above partially 
exposed mesophyll cells in order to elucidate the relationship between intact leaves and those mesophyll cells. 
Changes in current were smaller in the latter type. The partially exposed mesophyll cells of a leaf also showed electri- 
cal current changes, but smaller than those of the intact leaf. In DCMU-infiltrated leaf discs, the electrical currents of 
intact leaves were increased to 0.05 pA cm -2 in response to red light. For sodium azide-infiltrated leaf discs, however, 
intact leaves showed no response. Likewise, a measure of photosynthetic efficiency, the Fv/Fm ratio, was reduced to 
that measured in the control, thereby indicating that photosynthetic activity significantly altered the electrical current 
for intact leaves. Therefore, these results demonstrate that the current observed from the lower side of intact leaves is 
related to photosynthetic activity in the mesophyll cells. 
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Driven by the turgor changes in guard cells, stomata 
open in the light and close in the dark. Increases in 
turgor pressure results from the accumulation of ions 
when a primary electrochemical potential gradient is 
generated across the plasmalemma. This gradient pre- 
sumably originates through the electrogenic activity of 
a proton efflux pump driven by ATP, which then cre- 
ates both a pH and potential-difference gradients 
across the membrane (Spanswick, 1981). The stomatal 
guard cells have independent sensory transduction 
pathways for environmental factors including the influ- 
ence of light and CO2 concentrations (Assmann, 1999; 
Hethering~on and Woodward, 2003; Frechilla eta[., 
2004). However, it is not yet fully understood how 
these signals are sensed and transduced into driving the 
ion fluxes that control stomatal movements. 

The carotenoid pigment zeaxantin has been sug- 
gested as the signal transduction chain for a blue light 
photoreceptor in guard cells (Zeiger et al., 2002; Tal- 
bott et al., 2003). Phototropin has also been postu- 
lated as well (Kinoshita et al., 2001). However, 
neither the location nor the nature of the red-light 
responses in the stomatal guard cells is very dear. 
Chloroplasts which are present in the guard cells of 
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most species show photosynthetic electron transport 
(Willmer and Fricker, 1996; Tsionsky et al., 1997). 
These guard-cell chloroplasts are generally smaller and 
less numerous, and have fewer grana than mesophyll 
chloroplasts (Sack, 1987; Willmer and Fricke, 1996). 
However, photophosphorylation, on a chlorophyll 
basis, can be up to 80% higher than in the mesophyll 
cells (Shimazaki and Zeiger, 1985). Although guard 
cells have much lower chlorophyll contents than do 
mesophyll cells (25- to 100-fold less), they are also 
considerably (approximately 10-fold) smaller (Will- 
mer and Fricker, 1996). Zeiger (1990) has demon- 
strated that the red light receptors are contained in 
the guard ceil, where chloroplasts are able to do pho- 
tosynthesis. Furthermore, photosynthetic carbon fixa- 
tion in the guard cell chloroplasts has been implicated 
as sensing site (Zeiger et al., 2002; Frechilla et al., 
2OO4). 

Although the role of guard cell chloroplasts in CO2 
fixation is still controversial (Lee and Bowling, 1995; 
Wil[mer and Fricker, 1996; Lu et al., 1997; Asai et al., 
2000; Lawson et al., 2002, 2003; von Caemmerer et 
al., 2004), a correlation has been reported between 
photosynthesis and stomatal conductance (Outlaw, 
1989, 1996; Lee and Bowling, 1995; Shirke and 
Pathre, 2004). Outlaw (1989) has reviewed the evi- 
dence for such CO2 fixation by guard cells but has dis- 
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missed most of it on the basis of flawed techniques. 
Nevertheless, although the sensory transduction 

chain for red light is not yet clear, it is apparent that 
red-light photoreceptors are situated in the guard cell 
itself or in the mesophyll cells. The basic role of the 
stomata is to regulate transpiration and photosynthesis 
(Lee and Bowling, 1995). The latter process is central 
to plant physiology, such that an understanding of its 
response to light is critical to any discussion of how 
plants sense and react to that stimulus. However, 
research on stomatal physiology has been relatively 
negligible, and more studies are necessary to evalu- 
ate the role of mesophyll cells both in fixing carbon 
dioxide via photosynthesis and in contributing that 
carbon to epidermal cells over a long period. 

It is possible that, if the mesophyll cells are neces- 
sary for stomatal opening, then changes in the electri- 
cal properties of guard cells may depend on the 
mesophyll cells through electrical energy or signal 
metabolites. Fairy rapid hyperpolarization (at a poten- 
tial difference by 10-15 mV) has been observed in 
three types of cells (guard, subsidiary and epidermal) 
when intact leaves of Tradescantia albiflora are illumi- 
nated (Gunar et al., 1975). Such research has sug- 
gested that, because the epidermal and subsidiary 
cells do not contain chlorophyll, those light-induced 
changes in potential differences could be associated 
with the electrical excitation propagated from the 
mesophyll cells. 

A vibrating probe was used to measure electrical 
current over the surface of detached leaves and iso- 
lated portions of the leaf epidermis from Commelina. 
Bowling et al. (1986) have found a linear relationship 
between electrical current and stomata[ apertures. 

The main aim of this study was to investigate the role 
of the mesophyl[ cells in responding to red and blue 
lights. Changes in electrical current were measured on 
the lower sides of intact leaves as well from the isolated 
epidermis. In addition, mesophylI cells were infiltrated 
with chemical inhibitors that reduce photosynthetic 
activity. Afterward, alterations in electrical current were 
assessed on the lower side of the intact leaf and over 
the partially exposed mesophyll cells. 

MATERIALS AND METHODS 

Plant Materials and Growing Conditions 

Commelina communis L. was reared from seeds in 
a growth chamber (minimum day/night temperatures 
of 20 and 15~ under a 16-h photoperiod (photon 

flux density was 300 /~mol m 2s l  from mercury 
lamps). At all stages of development, moisture stress 
was averted by periodic watering, and 1 g L 1 Phos- 
trogen fertilizer was applied twice a week. Three- 
week-old healthy plants were used as experimental 
materials. 

Measurements of PSII Photochemical Efficiency 

Chlorophyll fluorescence was measured with a 
PAM-2000 fluorometer (Walz, Germany) after dark- 
adaptation for 1 h. Minimal fluorescence (Fo), with all 
open reaction centers, was obtained by determining 
the amount of modulated light sufficiently low 
enough (<0.1 t~mol m 2 s 1) not to induce any signifi- 
cantly variable fluorescence. Chlorophyll fluorescence 
(Fm), with all closed PSII reaction centers, was deter- 
mined by applying 0.8-s saturation pulse at 1000 
~mol m 2 s 1 to dark-adapted leaves. Variable fluores- 
cence (Fv) was equal to Fm minus Fo, hence, the 
photochemical efficiency of PSII was defined as Fv/ 
Fm (Kitajima and Butler, 1975). 

Infiltration of the Mesophyll Cells with Photosyn- 
thesis Inhibitors 

The leaves of C. communis were infiltrated for 48 h 
with various chemical inhibitors (Sigma, UK) of photo- 
synthesis (DCMU, DCCD, NAN3) for 48 h. Mature 
(second bifoliate leaf) leaves were excised and their 
petioles immediately dipped in a solution of 0.5 mM 
CaCI2 and 0.25 mM MgSO4 buffered at pH 5.9 with 
5 mM sodium citrate/10 mM sodium, which also 
contained either the inhibitors or a standard medium. 
DCMU and DCCD were dissolved in 80% ethanol. 
The leaves were kept in a growth chamber as 
described. During the infiltration period, efficiency 
was monitored according to uptake rate from 0.9 mL 
of medium over 24 h. Afterward, the effects of red 
light were examined by measuring the electrical cur- 
rent flowing on the lower sides of intact leaves. Epi- 
dermal strips were then removed to measure the 
currents above the partially exposed mesophyll cells 
in an effort to elucidate the relationship of electrical 
flow between intact leaves and mesophyll cells. 

Measurements of Electrical Current on the Sur- 
faces of Intact Leaves and from the Isolated Epi- 
dermis 

Electrical current at the leaf surface was measured 
with a vibrating probe (Model NJ 806; The Vibrating 
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Probe, USA), which was mounted on an XYZ microma- 
nipulator (Line Tool, USA) on a vibration-free bench. 
The probe was calibrated using a constant current 
source of 15 pA cm 2 in 10 mM MES-KOH (pH 6.15) 
and 100 mM KC[, at a resistivity of 540 cm 2 and with a 
vibration amplitude of 30 pm apart. Thus: 

Current density= 2.83 A c m  2 

3 x 10 -3 x 540 

Leaves from greenhouse-grown C. communis were 
first held for 1 h in darkness. Afterward, both the iso- 
lated epidermis and whole leaves were rolled and 
then fixed to the base of a plastic Petri dish, filled with 
10 mM MES-KOH buffer (pH 6.15) and 100 mM 
KCI. The dish was then mounted under a stereomi- 
croscope for viewing at 25X magnification. The vibrat- 
ing probe was lowered from 30 to 40 14m above the 
sample surface, and currents were listed on a chart 
recorder. When a steady reading for the currents had 
been obtained, the leaf surface was illuminated (100 
pmol m 2 s ~) by a Lux 150 4-port projector (assembled 
in the author's laboratory). Red light was obtained with 
a glass filter (transmitting above 625 nm, maximum 
peak: 650 nm) while blue light was produced 
through a plastic filter (transmitting 512-412 nm, 
maximum peak: 450 nm). 

Measurements of Stomatal Apertures 

Fully expanded leaves were detached and laid, 
abaxial surface uppermost, in plastic Petri dishes lined 
with wet filter paper. The dishes were first placed in 
the dark for 1 h so that the stomata would close. 
Leaves were then segmented and again laid abaxial 
side up in plastic Petri dishes tined with filter paper 
moistened with distilled water. At various intervals, the 
intact segments were transferred to liquid paraffin and 
their epidermal strips were peeled. To measure the 
stomatal apertures, an Olympus microscope (Japan) 
with a camera (200X magnification) was connected to 
a monitor video and a printer calibrated by an ocular 
micrometer disc. After incubation, the isolated epider- 
mis was also mounted under the microscope. Sto- 
matal apertures screened in the video could be 
photographed directly within one minute, after which 
they were accurately measured with a scaler. 

RESULTS 

Measurements of Electrical Currents 

A vibrating probe is a very sensitive instrument that 

can detect electrical changes of less than 1 #A. As the 
first to utilize this probe for stomatal studies, Bowling 
et al. (1986) found a linear relationship between cur- 
rents and stomatal apertures. Here, the vibrating 
probe was used to detect red and blue light-induced 
changes in electrical currents for both intact leaves 
and isolated epidermis (Fig. 1). Under darkness, read- 
ings for excised intact leaves were ranged from 0.3 to 
0.6 pA cm 2. These currents were relatively stable for 
the intact leaf surface in the dark, but slowly 
increased in response to red light. This initial rise was 
maintained for about 2 min, and then slowly declined 
to nearly the start point white the red light was on. In 
that tissue type, red and blue lights increased surface 
current by about 0.15 and 0.05 pA cm 2, respectively. 
In contrast, no changes in currents were recorded for 
the isolated epidermal tissue. 

Measurements of PSII Photochemical Efficiency 

To understand the pathway and directional move- 
ment of electrical components, it is important to trace 
changes in currents on the surfaces of excised intact 
leaves. Therefore, mesophyll cells were infiltrated 
with inhibitors to elucidate the correlation between 
current and photosynthetic activity (Fig. 2). DCMU is 
known to block electron flow from PSII to PSI, 
thereby preventing the reduction of NADP (Taiz and 
Zeiger, 2002). DCCD is an energy-transfer inhibitor 
that stops H + extrusion in Streptococcus faecalis (Harold 
and Papineau, 1972). It appears to bind covalently to 
the membrane-bound ATPase system from Strepto- 
coccus (Harold et al., 1969) and to inhibit plasma- 
membrane-bound ATPase from oat roots (Leonard 
and Hodges, 1973). Finally, although its site of action 
is unknown, NaN3 reportedly inhibits the Hill reaction 
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Figure 1. Effects of red and blue lights on changes in electri- 
cal currents on lower side of the intact leaf (a, b) and isolated 
epidermis (c) of C. communis. 
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ments, when mesophyll cells infiltrated with DCCD, 
red light did not significantly alter Fv/Fm, whereas, for 
NaN3 infiltrated leaf discs, photosynthetic activity was 
reduced nearly by half, with the Fv/Fm ratio being 
only 55% compared with the control. This demon- 
strates, therefore, if the crucial response to red light 
by partially exposed mesophyl[ cells that are treated 
with NAN3. 

Figure 2. Leaves of C. communis were infiltrated for 48 h 
with 1 mM of photosynthesis inhibitors (DCMU, DCCD, or 
NaN:~). Afterward, their effects of DCMU, DCCD, and NaN~ 
on quantum yield of Photosystem II, Fv/Fm, for the intact 
leaves were determined. Each value is mean (_+ SE) of three 
replicate experiments (3 plants each). 

(Spanswick, 1981 ). 
In the present study, infiltration with DCMU caused 

a 6% decrease in chlorophyll fluorescence (Fv/Fm) 
when mesophyll cells were exposed to red light. The 
ratio of Fv/Fm is proportional to the activity of the 
photosynthetic reaction centers and in particular, PSII 
(Demmig and Bjorkman, 1987). In other experi- 

Electrical Current Measurements for Leaves Infil- 
trated with Photosynthetic Inhibitors 

Mesophyll cells were infiltrated for 48 h before 
measurements were made. For the control, red light 
clearly affected electrical currents at the lower side of 
intact leaves (Fig. 3). There, in order to examine how 
mesophyll cells would influence those surface cur- 
rents, epidermal strips were carefully removed. Sur- 
prisingly, the partially exposed mesophyll cells did 
exhibit some changes in current, although to a lesser 
extent than those recorded for intact leaves. This is a 
further evidence for mesophy[I participation in alter- 
ing current at the leaf surface. 

Infiltration with DCMU caused an approximately 
73% drop in electrical currents for leaf surfaces and 

Figure 3. Leaves of C. communis were infiltrated for 48 h with photosynthesis inhibitors (DCMU, DCCD, NaN:~). Afterward, 
effects of red light on flow of electrical current and stomatal opening were determined for intact leaves (a). Epidermal strips were 
then removed to measure electrical currents above partially exposed mesophyll cells (b). NaN:~ was sampled for intact leaf (c) 
and mesophyll cells (d). For stomatal measurements, each point is mean (_+ SI-) of three replicate experiments (60 stomatal aper- 
tures). 
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partially exposed mesophyll cells in response to red 
light. DCCD had no effect on current at the leaf sur- 
face. Likewise, when infiltrated with NAN3, neither 
intact leaves nor mesophyll cells showed any change 
in current after red light exposure. Nevertheless, for 
those NaN3-infiltrated leaf discs, the more easily 
determined Fv/Fm ratio was reduced to 55% of the 
control even though altered currents were undetect- 
able at the intact surfaces of excised leaves. 

Measurements of Stomatal Apertures 

All tested mesophyll cells were held under dark- 
ness for 1 h. When transferred to the light, stomata 
from the control tissues opened to a maximum aper- 
ture of about 10.5 I, Lm after 1.5 h (Fig. 3). However, 
pre-infiltration of the mesophyll cells with DCMU 
caused a 29% decrease in aperture size for intact 
leaves. In NaN,-infiltrated leaf discs, that reduction 
was 70%. This further demonstrates that NaN~ was a 
very crucial chemical in terms of the inhibition of all 
physiological responses in this study. 

DISCUSSION 

Weyers and Meidner (1990) have suggested the use 
of isolated epidermal cells as a valuable technique 
tool for advancing our understanding of the stomata[ 
mechanism. However, attempts to study stomata[ 
behaviour have had varing success, casting doubts on 
the worthless of such the techniques. For instance, 
microelectrodes are used to measure cellular pH and 
membrane potentials, but their penetration into the 
thick guard cell walls can damage those cells, as well 
as result in broken electrode tips and improper inser- 
tion inside the guard cell space. Therefore, this 
present study utilized a vibrating probe to avoid such 
risks. Red light was three times more effective than 
blue in changing electrical current at the surfaces of 
excised intact [eaves, but neither influenced electrical 
flow for isolated epidermal cells. Two Blue light pho- 
toreceptors, carotenoid pigment zeaxantin or pho- 
totropin, have been suggested for stomatal responses 
(Kinoshita et al., 2001 ; Zeiger et al., 2002; Talbot{ et 
al., 2003). However, in this study, the red light- 
induced changes in electrical current observed at the 
surface of the excised intact leaf were related to mes- 
ophyll photosynthetic activity. 

Interest has been renewed in the study of sugar- 
related metabolism in guard cells (Lu et al., 1997). 
Gotow et al. (1988) have reported that sugar phos- 

phates are formed by photosynthesis in the guard 
cells of broad bean (Vicia faba L.), while, in the same 
plant system, red light causes an increase in stomatal 
aperture size on epidermal peels as well as a decrease 
in guard cell ~s without either a rise in guard cell K § 
concentration or a decline in guard cell starch content 
(Tallmann and Zeiger, 1988; Poffenroth et al., 1992; 
Talbott and Zeiger, 1993). Under other experimental 
conditions, the stomata also open without an increase 
in K § content but with a loss of starch. Those reports 
indicate that the data are not consistent with the the- 
on/that K ~ is the universal guard cell osmoticum, and 
include the suggestion that internal sugars arise as 
additional osmotica from the photosynthetic carbon 
reduction pathway or via starch breakdown. 

Lu et al. (1997) have proposed a hypothesis in 
which sucrose in the guard cell walls is the physiologi- 
cal signal that integrates transpiration, photosynthesis, 
and trans[ocation. It is generally believed that most 
evaporation of the transpiration stream occurs in or 
near the cell wall (Tyree and Yianoulis, 1980; Pickard, 
1982; Maier-Maercker, 1983; Yianoulis and Tyree, 
1984). Nevertheless, sucrose accumulates distally in 
the pathway, i.e., at the guard cell wall, because of 
the chromatography effect (Tyree and Yianoulis, 
1980). This starch accumulation then increases due to 
two factors. First, the sucrose concentration in the 
apoplast is the net result of sucrose release from the 
mesophy[I plus the efficiency of transport from the 
leaf (Ntsika and Delrot, 1986; van Bel, 1993; Lohaus 
et al., 1995). 

The second factor is the rate of transpiration. From 
their research on Pi,sum sativum, Reckman et al. 
(1990) have reported that the chlorophyll content in 
guard cells is about 1/80 of that in the mesophyll 
cells, whereas their Rubisco activity (0.12 pmol cell -1 
h -~) is just about 1/300 of that ordinary mesophyll 
cells. Therefore, the rate of hexose production through 
the photosynthetic pentose-phosphate cycle of the 
guard cells is not sufficient to deliver more than 2% of 
the flow of osmotic material required for stomatal 
opening. Pulse labeling, which follows the move- 
ment of solutes from labeled mesophyll into the epi- 
dermis as well as the much greater rate of 
accumulation of HCO2-fixation products in attached 
cells versus the isolated epidermis, all indicate a fairly 
rapid exchange of soluble metabolites between the 
mesophy[[ and the epidermis (Outlaw and Fisher, 
1975; Outlaw et a]., 1975; Dittrich and Rachke, 
1977; Wil[mer et al., 1978; Thorpe and Milthorpe, 
1984). These metabolites include glucose, sucrose, 
sugar phosphate, malate, glycine, serine, and the eth- 
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anol-insoluble HCl-hydrolysable fraction. 
Lu et al. (1997) have reported that the guard cells 

import mesophyl[-derived sucrose from the apoplast. 
In their study, levels of ~4C were low in the guard cells 
during the first 20 min after labeling, a result that dis- 
counts the guard cell photosynthetic carbon reduc- 
tion pathway as a substantial source for increased 
sucrose in the apoplast. At 40 min after labeling, 
sucrose-specific radioactivity in the apoplast was high, 
a finding that eliminates starch breakdown as an 
important source of the rise in sucrose levels in the 
guard cell apoplast. In separate research, Loreti et al. 
(2000) have demonstrated that sugar-sensing signal 
transduction modulates the action of gibberellic acid. 

Trejo et al. (1993) have found that rapid metabo- 
lism of abscisic acid (ABA) in the mesophyll can con- 
trol ABA levels both there and in the epidermis. This 
is a novel view of the mesophyll influencing hormonal 
concentrations in the guard cells via metabolism. 
Although the movement of such metabolites (glucose, 
sucrose, and sugar phosphate) and hormones from 
the mesophyll to the guard cell seems quite apparent, 
further investigation is warranted to determine how 
these compounds affect stomatal control. Neverthe- 
less, the present study clearly presents a correlation 
between photosynthetic activity and flow of the elec- 
trical current on the surfaces of excised intact leaves. 
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